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Orthogonalization-Guided Feature Fusion Network
for Multimodal 2D+3D Facial Expression

Recognition
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Abstract—As 2D and 3D data present different views of
the same face, the features extracted from them can be both
complementary and redundant. In this paper, we present a novel
and efficient orthogonalization-guided feature fusion network,
namely OGF2Net, to fuse the features extracted from 2D and
3D faces for facial expression recognition. While 2D texture
maps are fed into a 2D feature extraction pipeline (FE2DNet),
the attribute maps generated from 3D data are concatenated as
input of the 3D feature extraction pipeline (FE3DNet). The two
networks are separately trained at the first stage and frozen
in the second stage for late feature fusion, which can well
address the unavailability of a large number of 3D+2D face pairs.
To reduce the redundancies among features extracted from 2D
and 3D streams, we design an orthogonal loss-guided feature
fusion network to orthogonalize the features before fusing them.
Experimental results show that the proposed method significantly
outperforms the state-of-the-art algorithms on both the BU-
3DFE and Bosphorus databases. While accuracies as high as
89.05% (P1 protocol) and 89.07% (P2 protocol) are achieved on
the BU-3DFE database, an accuracy of 89.28% is achieved on
the Bosphorus database. The complexity analysis also suggests
that our approach achieves a higher processing speed while
simultaneously requiring lower memory costs.

Index Terms—Multimodal facial expression recognition, fea-
ture fusion.

I. INTRODUCTION

FACIAL expression is generated by one or more motions
of the muscles beneath the skin of the face. In daily com-

munication, facial expressions are important ways to express
the emotional reaction of a person to observers. Generally,
basic facial expressions can be divided into six categories:
anger, disgust, fear, happiness, sadness and surprise. In the
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field of computer vision and machine learning, numerous
studies have been conducted on facial expression recognition
(FER) due to its practical importance in sociable robotics,
medical treatment, driver fatigue surveillance, and many other
human-computer interaction systems [1].

Existing FER approaches in the literature can be classified
into three categories according to their data modalities: 2D
FER, 3D FER and multimodal 2D+3D FER. Comprising the
majority of FER approaches, 2D FER methods [2], [3], [4],
[5], [6], [7], [8], [9] are based on 2D face images or videos.
Despite the significant advances that have been achieved,
the 2D FER methods still fail to solve challenges related to
variations in illumination and pose [10].

With the increasing development of 3D sensors and scan-
ning technologies, various approaches have been proposed
for 3D FER. 3D FER methods can be divided into three
categories: model-based methods [11], [12], feature-based
methods [13], [14], [15] and deep learning based methods [16],
[17], [18]. Different from 2D data, 3D scans (captured by
infrared devices) are robust to pose, illumination and scale
variation, so 3D scans can address more complex scenes.
However, infrared images usually fail to capture subtle facial
deformations, such as skin wrinkles [19].

Considering the performance limitations of single-mode
data and the large complementarity among different modal-
ities, using both 2D and 3D data [20], [21], [10], [22], [23],
[24], [25] for FER is becoming a prospective research topic.
Although significant progress has been made in 3D FER and
2D+3D FER, unsolved problems still remain. While some
facial expressions are easy to distinguish, others are not.
For example, happiness and surprise can be easily identified,
but sadness and fear are often confused in [10]. Zhu et
al. [21] simply design six attention-based pipelines for feature
extraction to address this issue. Then, the extracted features
are directly fused into a high-level representation for FER.
There is no doubt that the features extracted from 2D and
3D attribute maps are complementary, but the maps are all
from the same face and may have similarities as well. The
extracted features can be potentially redundant, which may
have a negative effect on the FER, so it is necessary to reduce
redundancy before feature fusion.

Considering the above issues, in this paper, we propose
a novel approach using both 2D and 3D data for FER. We
combine all attribute maps generated by a 3D face as the
input of the 3D feature extraction pipeline (FE3DNet), and
the 2D texture maps are fed into the 2D feature extraction
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Fig. 1. Overview of OGF2Net. Each 3D face mesh is represented as a three-channel map (Idae). Idae and 2D texture image It are fed into the feature
extraction pipelines (FE3DNet and FE2DNet, respectively) to generate two 512-dimensional vectors. These two vectors are fed into the OG module, resulting
in two orthogonal features, which are then input into a feature fusion subnet. Finally, we adopt a classifier with two FC layers to compute the probability of
each expression.

pipeline (FE2DNet). The global weighted pooling (GWP)
module is utilized to vectorize the feature maps of the last
convolutional layers in FE3DNet and FE2DNet. While 2D and
3D data represent different views of the same face, different
backbone networks tailored to various image streams might be
more appropriate for extracting different features. As a large
number of 2D+3D face pairs are not available in the literature,
separately training the two networks and fusing their features
at a late stage is a more feasible approach. The capability of
2D and 3D face models can thus be fully explored.

We further design an orthogonal loss to map the two features
into an orthogonal space to remove the redundancies among
them. The orthogonalized features are then fused to combine
different information for further performance improvement.

Our contributions are as follows:

• This paper presents a novel CNN model, namely
OGF2Net, for 2D+3D FER. Our model uses two net-
works, FE2DNet and FE3DNet, to extract facial features
from 2D and 3D faces. The two networks are separately
trained at the first stage and frozen in the second stage
for late feature fusion, which can well address the un-
availability of a large number of 3D+2D face pairs.

• As the redundancy between features extracted from 2D
and 3D data may have a negative impact on the classi-
fication results for FER, we propose a novel orthogonal
loss to reduce the correlation of the features learned in
the two pipelines.

• The proposed method achieves state-of-the-art perfor-
mance on both the BU-3DFE and Bosphorus databases.

The rest of paper is organized as follows. Section II
briefly introduces the related work on 2D FER, 3D FER and
multimodal 2D+3D FER. Section III describes the proposed
method, including a detailed description of map generation, the
network architecture and the objective function. Experimental
results are shown in Section IV, and Section V concludes the
paper.

II. RELATED WORK

A. 2D FER

As the major FER method, 2D FER approaches can be
divided into two main categories based on the type of data:
static image and dynamic sequence. Static-based methods [2],
[3], [4], [5] only extract the features containing spatial in-
formation from a single image. For example, given a single
image, Burkert et al. [2] propose a convolutional neural
network (CNN) for 2D FER. They achieve 99.6% accuracy
and 98.63% accuracy on the CK+ [26] and MMI [27] datasets.
Meng et al. [3] believe that the subject’s identity attributes,
i.e., age, gender and personal characteristics, are nonlinearly
coupled with facial expressions. They propose an identity-
aware CNN network to capture both expression-related and
identity-related features for facial expression recognition. Yang
et al. [5] propose a De-expression Residue Learning (DeRL)
technique to extract representations of the expressive com-
ponents. Using a generative network trained by cGAN [28],
the neutral face image is generated from the input face with
different expressions. The expressive features deposited in the
intermediate layers of the generative model are extracted and
concatenated for FER. Different from static-based methods,
sequence-based methods [6], [7], [8], [9] not only focus on
the spatial features of a single image, but also consider the
temporal features of a continuous sequence. For example,
Jung et al. [6] use two different deep networks to extract
the high-level features. The first deep network extracts tem-
poral appearance features from image sequences, while the
other network extracts geometry features from temporal facial
landmark points. These two features are combined to boost
the performance of FER. They achieve 97.25% accuracy on
the CK+ database. Zhang et al. [8] propose a part-based
hierarchical bidirectional recurrent neural network (PHRNN)
to extract the temporal features of facial landmarks from a
continuous sequence. In addition, to complement the static
appearance information, they also introduce a multi-signal
convolutional neural network (MSCNN) to extract the spatial
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Fig. 2. Examples of gray texture images, three attribute maps and combined
RGB images for different expressions, i.e., anger, disgust, fear, happiness,
sadness, and surprise. From top to bottom are gray texture maps It, depth
maps Id, azimuth maps Ia, elevation maps Ie and combined maps Idae.

features. Finally, the temporal and spatial features extracted
by two networks are fused for FER. However, since 2D data
mainly contain appearance information, it is difficult to deal
with diverse real scenes by using only 2D data.

B. 3D FER

Traditional 3D FER approaches are mainly model-
based [11], [12] and feature-based [13], [14], [15] methods.
Model-based methods use training data to generate a generic
expression deformable model, which can be adapted to fit
new facial scans. The parameters generated by the models
are finally used as expression features for prediction. For
example, Mpiperis et al. [11] propose a bilinear elastically
deformable model to build correspondence among a set of
facial meshes. Given a new facial scan, the trained model
can estimate the expression and identity parameters, which
are used for expression prediction. Gong et al. [12] suggest
that the shape of an expressional 3D face can be composed
of two parts, a basic facial shape component (BFSC) and an
expressional shape component (ESC). The BFSC represents
the facial structure and neutral-style shape, and the ESC can
be used to extract facial expression features. Feature-based
approaches extract local expression features and then combine
these features for 3D FER. For instance, Berretti et al. [13]
compute and select the SIFT features on facial landmarks of
depth images and feed them into a support vector machine
(SVM) for 3D FER. Maalej et al. [14] utilize a Riemannian
framework to compute the distance of the geodesic path
between corresponding patches. Multi-boosting and an SVM
classifier are used to recognize the six facial expressions.

However, model-based methods need to build dense corre-
spondence between face scans, and feature-based approaches
require extracting the hand-crafted features, which greatly
limit the performance and generalization capabilities of these

methods. In recent years, deep learning based methods have
been widely applied to 3D FER due to their good performance.
For example, Li et al. [16] use a pre-trained CNN to extract
deep features from attribute maps. Then, expression prediction
is implemented by training linear SVMs over the deep features
and fusing these SVM scores. The average recognition rate
they achieve is 84.87% on BU-3DFE [29]. Yang et al. [17]
concatenate depth maps, curvature maps and landmark mask
maps to create a 3-channel image to train a CNN for FER.
The average recognition rate they obtain is 75.9% on BU-
4DFE [30]. Chen et al. [18] propose a fast and light manifold
CNN model (FLM-CNN) that adopts a human vision-inspired
pooling structure and achieves better performance in efficiency
and feature extraction. They report an average recognition
rate of 86.67% on BU-3DFE. However, using only 3D data
makes it difficult to focus on the appearance details of facial
expression images, resulting in limited performance.

C. 2D+3D FER

Recently, some works [20], [21], [10], [22], [23], [24], [25]
have utilized 2D and 3D multimodal data to further improve
the performance of FER. For instance, Li et al. [10] generate
six 2D facial attribute maps from a 3D face model. These
attribute maps are jointly fed into a feature extraction subnet,
generating hundreds of multichannel feature maps. All of these
feature maps are then fed into a feature fusion subnet, resulting
in a high-level deep feature. Then, a linear SVM classifier is
used for prediction. They achieve 86.86% accuracy on BU-
3DFE. Rather than generating 2D facial attribute maps, Jan
et al. [22] crop four facial parts (i.e., the eyebrows, eyes,
mouth and nose) from texture and depth images according to
the located facial landmarks. Then, deep fusion CNN features
are learned from these facial parts and input into a nonlinear
SVM. Their recognition rate reaches 88.54%. Zhu et al. [21]
propose an attention-based CNN to focus on emotional salient
regions. They also design a dimensional distribution(DD) loss
to learn more discriminative features. They report an average
accuracy of 88.35% on BU-3DFE. FER based on 2D+3D
multimodal data is becoming a promising research topic due to
the assumption that there exist large complementarities among
different modalities [10].

D. Loss-Guided Feature Transform

Nguyen and Bai [31] try to learn a transformation matrix to
minimize the angle θ between feature vectors extracted from
two faces of the same subject, i.e., maximize cos θ. In [32],
island loss is proposed by Cai et al. to push apart the centers
of different clusters to improve the recognition performance.
In this work, the value of (1+ cos θ) is minimized, i.e.,
the angle between the features of cluster centers is pushed
towards π. In [33], the absolute value of cos θ is minimized to
make person-specific shape features independent of the local
relationship features learned from the other stream. The loss
is applied to training the two networks for both streams.

The aim of our loss, cos2 θ, is to map the two features
extracted from different streams to an orthogonal space such
that the angle θ between them is close to π

2 . Our loss function
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is differentiable and more easily converges. To address the
unavailability of a large number of 3D+2D face pairs, the
loss is only applied to supervise the training of the fusion
subnetwork. The two networks of 2D and 3D streams are
separately trained in the first stage and frozen in the training
of the fusion network.

III. THE PROPOSED METHOD

A. Overview

Fig. 1 illustrates the framework of the proposed OGF2Net
for 3D+2D FER. Given a 3D face mesh and its corresponding
2D texture image It, we first generate three well-aligned facial
attribute maps, i.e., the depth map (Id), azimuth map (Ia) and
elevation map (Ie), to represent the 3D face scan. The three
maps are then combined into a three-channel map (Idae). It
and Idae are fed into two different pipelines, namely, FE2DNet
and FE3DNet, to extract two 512-dimensional vectors V1 and
V2, which are vectorized using the proposed GWP module
from the feature maps of the last convolutional layers. Then,
we design an orthogonalization-guided (OG) module super-
vised by the orthogonal (Orth) loss to generate two orthogonal
features F1 and F2. Finally, we feed the feature fusion subnet
with F1 and F2 and adopt a classifier with an FC layer to
compute the probability of each expression.

B. Attribute Map Generation

Each 3D face mesh and its corresponding 2D texture image
are used to generate a three-channel image Idae and a gray
image It, respectively. As the first channel of Idae, the depth
image is generated by fitting a surface from the 3D point cloud
in the form of z(x, y) using the gridfit algorithm [34]. The
surface normal of each point cloud is computed in spherical
coordinates (θ, φ), where θ and φ are the azimuth and elevation
angles of the normal vector, respectively. Using a similar
(x, y) grid as the depth image, surfaces of the form θ(x, y)
and φ(x, y) are fitted to the azimuth and elevation angles to
generate the second and third channels of Idae as in [35]. Since
color information has little effect on the expression category,
we convert the color image to a gray image as the input. Fig. 2
illustrates the three attribute maps (from the second row to
the fourth row), gray texture images (the first row) and depth-
azimuth-elevation maps (the last row).

C. Network Architecture

1) Feature Extraction: There are two pipelines in the
feature extraction process, i.e., FE2DNet and FE3DNet.

FE2DNet. The architecture of FE2DNet is a variant of
ResNet [36] as demonstrated in Fig. 3. (a). FE2DNet is
composed of 23 convolutional layers and a GWP module. All
convolutional layers use 3×3 filters and follow two design
rules: if the size of the output feature map is the same as that
of the input feature map, then the convolutional layers have
the same number of filters; if the size of the feature map is
halved, then the number of filters in the convolutional layer is
doubled except for the filters in the first convolutional layer.
We implement downsampling by convolutional layers with a
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(b) FE3DNet.

Fig. 3. Architecture of the proposed FE2DNet and FE3DNet.
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Fig. 4. Implementation of the global weighted pooling module. Each
component of the feature vector is computed by the dot product between
a feature map and its corresponding weight map.

stride of 2, and each convolutional layer is followed by a batch
normalization [37] and PReLu [38] layers. The GWP module
is described in detail in Section III-C2.

FE3DNet. As shown in Fig. 3. (b), the skeleton architecture
of FE3DNet is a modified version of FR3DNet [35], whose last
three fully connected layers are replaced with a GWP module.
FE3DNet consists of 13 convolutional layers, 5 max pooling
layers and a GWP module. Note that each convolutional layer
is followed by an ReLu layer just as in [35]. The kernel size of
the first two convolutional layers is 7×7, while that of the other
convolutional layers is 3×3. All convolutional layers do not
halve the size of feature maps. In addition, FE3DNet performs
downsampling with the max pooling layer.

2) Global Weighted Pooling Module: Generally, many
CNN architectures use a global average pooling (GAP) layer
to vectorize the feature maps of the last convolutional layer.
GAP is computed as:

yk =

∑M
i=1

∑N
j=1 x

k
ij

MN
(1)

where xk and yk are the components of the kth feature map
and the kth feature vector, respectively. M and N are the
length and width of the feature map. GAP achieves good
performance in general object recognition. However, different
from object recognition, the input face images of FER are
well aligned such that corresponding areas contain fixed facial
components. In high-level feature maps, each pixel represents
a specific area of the input image and contains fixed semantic
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Fig. 5. Visualization of the heat maps from the two feature extraction pipelines
(FE2DNet and FE3Dnet). The heat maps in the 1st, 3rd, 5th, 7th and 9th rows
are extracted from FE2DNet. The heat maps in the 2nd, 4th, 6th, 8th and 10th
rows are extracted from FE3DNet.

information. If we use GAP in FER, then it would obviously
ignore some semantic information.

As shown in Fig. 4, we utilize a global weighted pooling
(GWP) module to replace GAP and flatten layer. For each
feature map, GWP is implemented by employing a weight
map whose size is the same as that of the feature map. The
output feature vector is calculated by the dot product of the
feature map and weight map. GWP is formulated as:

yk =

M∑
i=1

N∑
j=1

xkijw
k
ij (2)

where wk is the component of the kth weight map. As shown
in Eq.2, GWP sets learnable weights for each pixel of the
feature map, while GAP only provides average weights. After
training with a large amount of faces, it pays more attention
to the specific spatial areas. As shown in Fig. 1, two 512-
dimensional vectors, V1 and V2, can be extracted by FE2DNet
and FE3DNet integrated with GWP.
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OG 

OG 

Fig. 6. Details of the orthogonalization process. The weights of the OG
module can be updated under the supervision of Orth loss.

3) Orthogonal Loss-Guided Feature Orthogonalization: As
V1 and V2 are extracted from different modalities of the same
face, they certainly contain some complementary information
about the face. However, there might be redundancy among
them as well. To show the complementarity and redundancy
of features extracted from different modalities, we visualize
the expression-sensitive regions that are important to recog-
nition on heat maps using the Grad-CAM method [39]. The
visualization is calculated for features V1 and V2. In Fig. 5,
the heat maps in the odd and even rows are extracted from
FE2DNet and FE3DNet, respectively. Each column displays
different facial expressions, i.e., anger, disgust, fear, happiness,
sadness and surprise. From these heat maps, we observe
some interesting phenomena. First, the mouth and eye are
the most important regions for classifying all six expressions.
Second, the sensitive regions of the first row are completely
different from those of the second row, which represents the
complementary characteristics between features extracted from
FE2DNet and FE3DNet. However, some sensitive regions
(such as the third and fourth rows of the sixth columns) are
similar, which shows potential redundancy among them.

Thus, to alleviate the redundancy between features extracted
from 2D and 3D data, we propose an orthogonalization-
guided (OG) module to force the output of our model to
be as orthogonal as possible. As shown in Fig. 6, our OG
module separately takes V1 and V2 as the input, transforms
them with an FC layer and outputs two orthogonal features
F1 = [α1, α2, ..., α512]T and F2 = [β1, β2, ..., β512]T . The
proposed OG module is supervised by the orthogonal loss to
ensure the independence between F1 and F2:

LOrth = (cos θ)2 = (
F1 · F2

‖F1‖ ‖F2‖
)2 (3)

where θ is the angle between F1 and F2. We square cos(θ) to
ensure that LOrth can be differentiated. In addition, only when
θ = 90 does LOrth = 0 hold; otherwise, LOrth is greater than
0.
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Anger Disgust Fear Happy Sadness Surprise 

Fig. 7. Samples of 2D texture images of BU-3DFE with different expressions
and four levels of expression intensity. From top to bottom are level 1 to level
4.

4) Feature Fusion: As shown in Fig. 1, the main com-
ponents of the feature fusion subnet are FC layers and con-
catenation operations. The inputs of the feature fusion subnet
are two 512-dimensional features (F1 and F2) output by the
proposed OG module. We concatenate F1 and F2, and utilize
two FC layers to learn the feature F3. Then, F1, F2 and F3

are concatenated into a 1536-dimensional feature, which is
further mapped by an FC layer to a 512-dimensional feature.
Finally, we adopt a classifier with an FC layer to compute the
probability of each expression.

We use additive margin softmax (AMS) loss [40] to update
the parameters of the feature fusion subnet and OG module.
AMS loss adds an additive angular margin (m) and scaling
factor (s) to softmax loss, making the decision more stringent,
which is defined as:

LAMS = − 1

N

∑
i

log(
es(W

T
yi
fi−m)

es(W
T
yi
fi−m) +

∑c
j=1,j 6=yi e

sWT
j fi

)

(4)
Finally, our full objective is defined as:

Lall = λ× LOrth + LAMS (5)

where λ is a hyper-parameter to balance the two terms LAMS

and LOrth.

D. Training Strategy

To speed up the convergence of the OGF2Net training,
we use a two-step training strategy to train our network in
PyTorch. The first step is to train FE2DNet and FE3DNet using
It and Idae, respectively. The weights of FE2DNet are pre-
trained on the publicly available dataset CASIA-WebFace [41].
We initialize the weights of convolutional layers in FE3DNet
by the pre-trained model of FR3DNet [35]. During the first
step, the hyper-parameters are set as follows:

• Batch size = 32;
• Max epoch = 100;

Anger Disgust Fear Happy Sadness Surprise 

Fig. 8. Samples of 2D texture images of Bosphorus with different expressions.
Each expression has only one level of expression intensity.

• The learning rates of the convolutional and FC layers are
0.001 and 0.0001, respectively, and are multiplied by 0.1
at 30 and 60 epochs;

• Adam [42] is used as the learning optimizer.
The second step is to train the feature fusion subnet while

the parameters of FE2DNet and FE3DNet learned in the first
step are fixed. During the second training step, most of the
hyper-parameters have the same value as those in the first
step, except for the following:
• Max epoch = 35;
• The learning rate is set as 0.001 and decreased by

multiplying it by 0.1 at 16 and 24 epochs;
• λ = 10.

IV. EXPERIMENTAL RESULTS

We compare our results with those of state-of-the-art meth-
ods and evaluate the effectiveness of the proposed method
on the BU-3DFE [29] and Bosphorus [43] databases. The
databases, protocols and results are described in the following
sections.

A. Databases and Protocols

1) BU-3DFE Database: The BU-3DFE database contains
2500 scans of 100 subjects (56 females and 44 males), with
ages from 18 to 70 years old. Each subject has 25 samples
of seven expressions: one sample for neutral and the other 24
samples for six prototypical facial expressions, i.e., happiness,
disgust, fear, anger, surprise and sadness. As shown in Fig. 7,
each prototypical expression includes four levels of intensity.

2) Bosphorus Database: The Bosphorus database consists
of 4666 scans captured from 105 subjects. While the face of
65 subjects present six prototypical expressions, other subjects
only present some of the six expressions. For each of the 65
subjects, a 3D+2D pair is available for each expression, as
shown in Fig. 8.

3) Protocols: For the BU-3DFE database, we follow the
two protocols (i.e., P1 and P2) presented in [15], [21], [44].
In P1, we randomly select 60 subjects with the third and
fourth expression intensity levels from all 100 subjects. These
60 subjects are fixed in the entire experiment. Then the 10-
fold cross-validation method is adopted: the 60 subjects are
divided into 10 subsets. Every subset includes 6 subjects and
is used as testing data, while the remaining 9 subsets are used
as training data. The validation is repeated 100 times to obtain
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON

BU-3DFE.

Approach Feature Accuracy(%)

P1 P2

Yang et al.(2015) [44] Hand-crafted 84.80 82.73

Zhen et al.(2015) [15] Hand-crafted 84.50 83.20

Li et al.(2015) [20] Hand-crafted 86.32 -

Li et al.(2017) [10] Deep learning 86.86 -

Chen et al.(2018) [18] Deep learning 86.67 85.96

Wei et al.(2018) [45] Deep learning 88.03 -

Jan et al.(2018) [22] Deep learning 88.54 -

Zhu et al.(2019) [21] Deep learning 88.35 87.06

FE3DNet Deep learning 85.20 85.13

FE2DNet Deep learning 86.58 86.69

OGF2Net Deep learning 89.05 89.07

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON

BOSPHORUS.

Approach Feature Accuracy(%)

Li et al.(2015) [20] Hand-crafted 79.72

Yang et al.(2015) [44] Hand-crafted 77.50

Li et al.(2017) [10] Deep learning 80.28

FE3DNet Deep learning 83.55

FE2DNet Deep learning 85.73

OGF2Net Deep learning 89.28

a stable result. In P2, the only difference from P1 is that we
randomly select 60 subjects from all 100 subjects for each
testing sequence.

As for the Bosphorus database, we follow the same protocol
as that of [10]: 60 subjects are randomly selected from 65
subjects and divided into 10 subsets. Every subset including 6
subjects is used as testing data, while the remaining 9 subsets
are used as training data. The testing is repeated 100 times
and the average accuracy is recorded.

B. Results

1) BU-3DFE Database: Table I lists the performance
comparison against other approaches that follow the same
protocols (i.e., P1 and P2) for the BU-3DFE database. As we
can see, the proposed OGF2Net outperforms both FE2DNet
and FE3DNet, which suggests the effectiveness of our feature
fusion. For both the P1 and P2 protocols, although the ac-
curacies of FE2DNet and FE3DNet are lower than those of
the other algorithms, OGF2Net achieves the highest accuracy
of 89.05% and 89.07%, which beats all of the competing
methods.

Fig. 9. (a) and Fig. 9. (b) show the confusion matrix of
OGF2Net for the P1 and P2 protocols on the BU-3DFE
database, respectively. The diagonal of these two matrices

suggests that our method performs remarkably well in recog-
nizing the expressions of happiness and surprise. In particular,
the accuracy of our approach in P1 for the fear expression is
approximately 7.69% higher than that of Li et al. [10], i.e.,
79.24%.

To further illustrate the effectiveness of OGF2Net, the first
two rows of Fig. 10 visualize the features of the last FC layer
in FE2DNet, FE3DNet and OGF2Net using t-SNE [46] for
BU-3DFE. The first and second rows are visualized for the P1
and P2 protocols, respectively. Since the feature distribution of
each validation set is independent, we only use one validation
set that contains 72 samples to illustrate the features. As
depicted in the first two rows of Fig. 10, the features of
OGF2Net are densely clustered and have distinct boundaries
for each expression category, while the features of FE2DNet
and FE3DNet are not well discriminative and have ambiguous
boundaries. This result suggests that OGF2Net is effective and
more discriminative.

2) Bosphorus Database: Table II lists the results of the
proposed OGF2Net, together with that of FE2DNet, FE3DNet
and other approaches in the literature. As shown in Table II,
OGF2Net, exceeds the existing methods on Bosphorus, as do
FE2DNet and FE3DNet. In particular, the result of OGF2Net
reaches a new state-of-the-art performance, with an increase
of 9% over the approaches of Li et al. [10], i.e., 80.28%. As
shown from the confusion matrix of the Bosphorus database
in Fig. 9. (c), OGF2Net has a remarkable recognition perfor-
mance for the expression of happiness. Again, we visualize
the feature distribution of FE2DNet, FE3DNet and OGF2Net
using one of the validation sets that contains 36 samples in
the third row of Fig. 10. The features of OGF2Net have a
more obvious clustering structure for different expressions
than those of FE2DNet and FE3DNet. This emphasizes that
OGF2Net is more discriminative in distinguishing different
expressions.

C. Ablation Study

In this section, we design three control experiments (i.e.,
on the pre-trained models for FE2DNet and FE3DNet, the
rationality of GWP, and the effectiveness of Orth loss) to
validate the effectiveness of our OGF2Net. Note that all these
control experiments are implemented on BU-3DFE with the
P1 protocol.

1) Results with/without the Pre-trained Models: As de-
scribed in Section III-D, we utilize two pre-trained models to
initialize FE2DNet and FE3DNet. In this section, we compare
the performances with and without the pre-trained models to
validate the importance of the pre-trained models. To maintain
a single control variable, we use the GWP module to vectorize
the feature maps in this experiment. As shown in Table III,
it is obvious that the accuracies using the pre-trained models
are higher than those without using the pre-trained models
(FE2DNet: 84.86% vs 86.58%, FE3DNet: 81.09% vs 85.20%,
OGF2Net: 86.79% vs 89.05%). This significant improvement
proves the importance of the pre-trained models for FE2DNet,
FE3DNet and OGF2Net.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 15,2020 at 02:34:49 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2020.3001497, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 8

(a) BU-3DFE (P1) (b) BU-3DFE (P2) (c) Bosphorus

Fig. 9. Confusion matrix of OGF2Net for the BU-3DFE and Bosphorus databases. The labels on the vertical and horizontal axis represent the ground truth
and predicted expressions, respectively. AN, DI, FE, HA, SA, SU are abbreviations for anger, disgust, fear, happiness, sadness and surprise, respectively.
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Fig. 10. t-SNE visualization of the features extracted by FE2DNet, FE3DNet and OGF2Net on the BU-3DFE (first and second rows) and Bosphorus (third
row) databases.

2) Rationality of the GWP module: As mentioned in
Section III-C2, there are three options for vectorizing the
feature maps of the last convolutional layers in FE2DNet
and FE3DNet: Flatten, GAP and GWP. We compare the
memory requirements and accuracies of them in Table III.
The size of parameters of GWP is slightly larger than that
of GAP, but much smaller than that of Flatten (FE2DNet:
96.63 MB vs 71.63 MB vs 71.69 MB, FE3DNet: 81.83 MB
vs 56.83 MB vs 56.88 MB, and OGF2Net: 186.48 MB vs
136.48 MB vs 136.59 MB). Moreover, GWP achieves better

performance than GAP and Flatten (FE2DNet: 85.58% vs
86.16% vs 86.58%, FE3DNet: 85.08% vs 83.01% vs 85.20%,
and OGF2Net: 88.54% vs 88.59% vs 89.05%). Thus, we
suggest that the designed GWP module is more effective and
reasonable than GAP and Flatten for FER.

3) Results of the early fusion strategy: While our work
uses the late fusion scheme to fuse the features extracted by
FE2DNet and FE3DNet, we test the performance of early
fusion in this section. For early fusion, the images It and Idae
are concatenated into a 4-channel image and fed into a deep
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TABLE III
ABLATION STUDY OF DIFFERENT MODELS ON BU-3DFE (P1).

Model Pre-trained Vectorization Approach Early Concatenation of Orth Loss Parameters Accuracy

Model Flatten GAP GWP Fusion F1 and F2 (MB) (%)

FE2DNet

X X 96.63 85.58
X X 71.63 86.16

X - 84.86
X X - 85.01

X X 71.69 86.58

FE3DNet

X X 81.83 85.08
X X 56.83 83.01

X - 81.09
X X - 81.58

X X 56.88 85.20

OGF2Net

X X X X 186.48 88.54
X X X X 136.48 88.59

X X X - 86.79
X X X - 88.33
X X X - 88.47
X X X X 136.59 89.05

network for classification. As listed in the column of ”Early
Fusion” in Table III , the performance (85.01%) of FE2DNet
is approximately 3% higher than that (81.58%) of FE3DNet.
However, both of them are much lower than that (89.05%) of
our OGF2Net using the late fusion strategy.

4) Effectiveness of Orth Loss: To evaluate the effectiveness
of the proposed Orth loss, we compare the performances with
and without Orth loss. As we can see in Table III, Orth loss
improves the accuracy of OGF2Net from 88.47% to 89.05%,
which is a state-of-the-art performance.

We also calculate the offset of the angle between F1 and
F2 from π

2 to evaluate the orthogonality of the two features
learned with and without the proposed Orth loss, which is
defined as :

∆ =

∣∣∣∣arccos(
F1 · F2

‖F1‖ ‖F2‖
)− π

2

∣∣∣∣ (6)

The smaller the offset is, the better the orthogonality between
features F1 and F2. For 720 samples in one of the validation
sets, the average offsets for features learned with and without
Orth loss are 2.8290◦ and 6.2040◦, respectively. It seems that
the proposed Orth loss can greatly reduce the offset of the
angle between F1 and F2, from π

2 and thus orthogonalize the
two features.

Fig. 11 also visualizes the angles between F1 and F2 for the
720 samples. Each blue dot in this figure represents the angle
between each pair of features F1 and F2. While the radius of
blue dots are randomly generated, the angles between the blue
dots and the 90◦ axis are determined by the angles between
F1 and F2. As observed from the figure, the angles for the
features learned with Orth loss are much more clustered and
located much closer to the 90◦ axis.

5) Concatenation of F1 and F2: Though F3 is the fusion of
F1 and F2, we believe that complementary information might
still exist between F3 and F1/F2. To test if the concatenation of
F1 and F2 with F3 is necessary, we compare the performances
of OGF2Net with and without extra concatenation of F1 and
F2 in Table III. As shown in the table, the addition of F1

(a) without Orth loss (b) with Orth loss

Fig. 11. Comparison of angles between features F1 and F2 generated without
and with Orth loss. The angle between a blue dot and the x-axis illustrates
the angle between facial feature vectors F1 and F2, while the radius of the
blue dot from the origin is randomly generated.

TABLE IV
COMPARISON OF COMPLEXITY WITH OTHER METHODS.

Approach Parameter (MB) FPS

Jan et al. [22] ≈ 327 ≈33

Zhu et al. [21] ≈ 463 ≈10

OGF2Net ≈ 137 ≈93

and F2 further improves the accuracy of F3 from 88.33% to
89.05%.

D. Complexity Analysis

To further analyze the complexity of our approach, we
compare in Table IV the memory cost of the parameters and
the processing speed FPS (frames per second) of the proposed
method with those of previous methods [21], [22], which are
recorded using a workstation equipped with an Intel Xeon
CPU (E5-2690 v4, 2.6 GHz) and an NVIDIA Tesla-P100
GPU. While the memory cost of our approach (137 MB) is
significantly lower, our approach is much more efficient in
terms of processing speed.

V. CONCLUSION

In this paper, we present an efficient 2D+3D facial
expression recognition (FER) network based on a novel
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orthogonalization-guided feature fusion network, OGF2Net,
which extracts and fuses complementary features for 2D+3D
FER. The orthogonal (Orth) loss is proposed to reduce the
correlation and redundancy among the features learned by
FE2DNet and FE3DNet. Furthermore, we use the global
weighted pooling (GWP) module to vectorize the feature
maps in FE2DNet and FE3DNet to learn more discriminative
features and achieve a better result. Experimental results show
that our proposed method achieves better performance than
other state-of-the-art methods. For BU-3DFE, we achieve
89.05% and 89.07% accuracy for the P1 and P2 protocols,
respectively. For Bosphorus, our recognition rate reaches as
high as 89.28%.
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